Convective instabilities in a laminar shock-wave/boundary-layer interaction

نویسندگان

چکیده

Linear stability analyses are performed to study the dynamics of linear convective instability mechanisms in a laminar shock-wave/boundary-layer interaction at Mach 1.7. In order account for all two-dimensional gradients elliptically, we introduce perturbations into an initial-value problem that found as solutions eigenvalue formulated moving frame reference. We demonstrate this methodology provides results independent numerical setup, speed, and type eigensolutions used initial conditions. The obtained time-integrated wave packets then Fourier-transformed recover individual-frequency amplification curves. This allows us determine dominant spanwise wavenumber frequency yielding largest shock-induced recirculation bubble. By decomposing temporal wave-packet growth rate physical energy-production processes, provide in-depth characterization interaction. For particular case studied, is achieved near-vicinity bubble apex due wall-normal (productive) streamwise (destructive) Reynolds-stress terms. also observe Reynolds heat-flux effects similar but contribute smaller extent.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Modified Flux Vector Splitting Scheme for Flow Analysis in Shock Wave Laminar Boundary Layer Interactions

The present work introduces a modified scheme for the solution of compressible 2-D full Navier-Stokes equations, using Flux Vector Splitting method. As a result of this modification, numerical diffusion is reduced. The computer code which is developed based on this algorithm can be used easily and accurately to analyze complex flow fields with discontinuity in properties, in cases such as shock...

متن کامل

A Modified Flux Vector Splitting Scheme for Flow Analysis in Shock Wave Laminar Boundary Layer Interactions

The present work introduces a modified scheme for the solution of compressible 2-D full Navier-Stokes equations, using Flux Vector Splitting method. As a result of this modification, numerical diffusion is reduced. The computer code which is developed based on this algorithm can be used easily and accurately to analyze complex flow fields with discontinuity in properties, in cases such as shock...

متن کامل

Absolute and convective instabilities in an inviscid compressible mixing layer

We consider the stability of a compressible shear flow separating two streams of different speeds and temperatures. The velocity and temperature profiles in this mixing layer are hyperbolic tangents. The normal mode analysis of the flow stability reduces to an eigenvalue problem for the pressure perturbation. We briefly describe the numerical method that we used to solve this problem. Then, we ...

متن کامل

Control Parameters for Boundary-Layer Instabilities in Unsteady Shock Interactions

This article presents the computation of a set of control parameters for the deterministic prediction of laminar boundary-layer instabilities induced by an imposed unsteady shock interaction. The objective of the study is exploratory in nature by computing a supersonic flight environment for flow over a blunt body and the deterministic prediction of the spectral entropy rates for the boundary l...

متن کامل

Dynamic and Deformation of a liquid Droplet in a Convective Two-Dimensional Laminar Flow

The objective of this research is to develop an accurate numerical method to be used in showing the deformation of a liquid fuel droplet in a convective field. To simultaneously solve the internal liquid droplet flow field as well as the external gas phase flow field, a nonstaggered rectangular grid system without any coordinate transformation is used. Transition from the gas field to the liqui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics of Fluids

سال: 2023

ISSN: ['1527-2435', '1089-7666', '1070-6631']

DOI: https://doi.org/10.1063/5.0135590